

Produktdatenblatt

Palas® AQ Guard

Anwendungen

- Industrie (Innenräume):
 - o Produktionsprozesse
 - o Schüttguthandling (Mischen, Entleeren, Lagerung, Verpackung etc.)
 - o Perimeterüberwachung
- Gebäude: Schulen, Kindergärten, Krankenhäuser, Hotels, Büros, öffentliche Gebäude
- Wohngebäude in der Nähe von Baustellen oder anderen verschmutzten Gebieten
- Öffentlicher Verkehr: Flughäfen, Bahnhöfe, Straßenbahn- und U-Bahnstationen, Fahrgasträume von Fahrzeugen, Schiffen und Flugzeugen
- Externe Überprüfung der Kalibrierung vor Ort möglich

Vorteile

- Technologie basierend auf der zertifizierten Fidas® 200-Serie (EN16450 und MCERTS); simultane Messung von C_n, PM₁, PM_{2,5}, PM₄, PM₁₀
- Bestimmung des Luftqualitätsindex beruhend auf der Messung von Feinstaub,
 CO₂ und VOC
- Hohe Genauigkeit durch fortschrittliche Algorithmen
- Langzeitstabil aufgrund Selbstkalibrierung; bis zu 2 Jahre Betrieb ohne Kalibrierung möglich.
- Betrieb über Netzstrom, Gleichstrom oder Power-over-Ethernet (PoE)

Beschreibung

AO Guard ist das derzeit fortschrittlichste kompakte Aerosolspektrometer zur Bestimmung der Feinstaubbelastung der Luft in dem Innenräumen. Mit aleichen Messsystem und den aleichen hochentwickelten Algorithmen wie das EN 16450-zertifizierte Fidas® 200 analysiert es kontinuierlich zuverlässig luftgetragenen und exakt die Feinstaubpartikel im Größenbereich 180 nm - 18 µm. Die "ambient"-(mit Version beheiztem Aerosoleinlass) erreicht eine mit amtlich zugelassenen Messgeräten vergleichbare Genauigkeit, womit sich AQ Guard deutlich von ähnlichen Geräten abhebt.

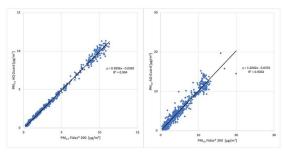


Abb. 2: Vergleich von Messwerten zwischen AQ Guard ambient und Fidas* 200 S

den für den amtlichen Neben **Immissionsschutz** relevanten Feinstaubfraktionen PM₁₀ und PM₂₅ berechnet und speichert AQ Guard simultan PM₁, PM₄, die Gesamtstaubdie Partikel-Anzahlbelastung, konzentration sowie die C_n

Partikelgrößenverteilung. AQ Guard umfangreiche liefert damit und genaue Informationen über Feinstaubpartikel, was in dieser Form einem zählenden Einzelpartikelmessverfahren möglich ist. AQ Guard ist für den unbeaufsichtigten Dauerbetrieb ausgelegt und verfügt über ein außerordentlich langlebiges Gebläse für Probenluftstrom. Aerosolprobenahme sowie optisches Sensorsystem sind verschmutzungs-resistent und können trotzdem im Bedarfsfall Anwender selbst gereinigt werden. Eine automatische Nachführung der Kalibrierung des Messsystems sorgt eine bisher unerreichte Langzeitstabilität und erlaubt den Betrieb über bis zu zwei Jahre ohne Nachkalibrieren. Der Kalibrierzustand kann mittels eines von Palas® kalibrierten Teststaubs überprüft werden. Palas®-Aerosolspektrometer sind dadurch die einzigen optischen Feinstaubmessgeräte, die Anwender am Betriebsort gegen rückführbaren Standard einen kalibriert werden können.



Abb. 3: Bildschirmanzeige des AQ Guard

Parte Q

Mit zusätzlichen Sensoren für CO2 und flüchtige organische Kohlenwasserstoffe (VOC) ermittelt AQ Guard die erforderlichen Daten zur Bestimmung des Luftqualitätsindex' entsprechend Rechenmodell. europäischen AQ Guard erfasst außerdem Lufttemperatur, Luftdruck und relative Luftfeuchtigkeit.

Abb. 4: Web-Interface

AQ Guard verfügt über schnelle Datenschnittstellen und ermöglicht den Echtzeitzugriff über Ethernet, WLAN oder Mobilfunk. Messwerte im Gerät berechnet und aufgezeichnet werden ist keine externe Auswertung, z. B. durch Cloud-Computing, erforderlich. Der Anwender kann dadurch vollständige Kontrolle über seine Daten behalten und entscheidet selbst. welche Informationen zugänglich sind. AQ Guard kann sowohl Daten numerisch bereitstellen. als auch über einen eingebauten Server mit einem modernen Webinterface für alle Geräteklassen visualisieren.

Die kompakte Bauform und die Möglichkeit zur Stromversorgung über die Ethernet-Schnittstelle (PoE) vereinfacht die Installation in Gebäuden und die Integration in vorhandene Infrastruktur.

Technische Daten

Schnittstellen USB, HDMI, Ethernet, WLAN, optional: UMTS

Messbereich (Größe) 0,175 – 20 μm

Größenkanäle 128 (64/Dekade)

Messprinzip Optische Lichtstreuung mit Auswertung von

Signaldauer und -form am Einzelpartikel, weiterentwickelter Algorithmus zur

Berechnung der Feinstaubwerte

Messbereich (Anzahl C_N) 0 - 20.000 Partikel/cm³

Volumenstrom 1,0 $I/min \triangleq 0,06 \text{ m}^3/h$

Messdatenerfassung 20 MHz Prozessor, 256 Rohdatenkanäle,

digital

Lichtquelle langzeitstabile LED

Stromverbrauch < 15 W

Benutzeroberfläche Hochauflösender Farbbildschirm (5 Zoll)

mit Touch-Funktion

Abmessungen 175 • 280 • 140 mm (H • B • T)

Gewicht 2,4 kg

Betriebssystem Windows 10 IoT Enterprise

Datenspeicher 10 GB

Reaktionszeit 1 s

Aerosolkonditionierung optional: Thermisch mit kompakter IADS

Messbereich (Masse) $0 - 20.000 \,\mu\text{g/m}^3$

Messgrößen PM_{1} , $PM_{2.5}$, PM_{4} , PM_{10} , TSP, C_{N} ,

Partikelgrößenverteilung, Druck, Temperatur,

Feuchte, CO₂, TVOC, Air Quality Index

Aufstellungsbedingungen -20 - +50 °C

Linearität 0,95 - 1,05

(gegen EN16450-zertifizierten Fidas® 200)

Messunsicherheit R2 > 0,98 für PM2.5 und R2> 0,94 für PM10

gegen EN16450-zertifizierten Fidas® 200

(jeweils 15 min Mittelwert)

Schnittstellen USB, HDMI, Ethernet, WLAN, optional: UMTS